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Temperature of nonequilibrium steady-state systems

András Baranyai
Department of Theoretical Chemistry, Eo¨tvös University, P.O. Box 32, 1518 Budapest 112, Hungary

~Received 10 April 2000!

We determined theoperational temperatures of nonequilibrium-molecular-dynamics~NEMD! systems by
the recently developed thermometer@A. Baranyai, Phys. Rev. E61, R3306~2000!# and compared these values
to the dynamictemperatures@H. H. Rough, Phys. Rev. Lett.78, 772 ~1997!# of the same systems. NEMD
models use asynthetic thermostat, a numerical feedback procedure to remove the dissipative heat instanta-
neously. A consequence of this feedback is a splitting of the dynamic temperature. The kinetic part is different
from the configurational part because the energy is removed through the momentum subspace of the system. In
addition to this, these temperature values also vary with respect to the direction of the external perturbation. In
the case of planar Couette flow and color flow, the isotropic operational temperatures of dense liquids are
always closer to the configurational than to the kinetic temperatures. We show that the observed split and the
pronounced directional dependence of the dynamic temperature is an artifact caused by the instantaneous
feedback of NEMD models. Since relaxation of a preset difference between the kinetic and the configurational
temperature is an order of magnitude faster than the relaxation of the heat flux vector, for models with realistic
thermostas such a split must be very small. We argue that in real systems, even far from equilibrium, the
operational temperature and both terms of the dynamic temperature must be practically identical and isotropic.

PACS number~s!: 05.70.Ln
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I. INTRODUCTION

The thermodynamics of nonequilibrium states has alw
been a matter of debate. In the case of steady-state hydr
namic systems atomistic computer simulation may be
way to answer at least some of the open questions. Th
type of studies, initiated and developed by Hoover, Eva
and co-workers@1,2#, in addition to mimicking the behavio
of real liquids, established connections between reali
models and the theory of nonlinear systems@3#. However, to
formulate a theory of thermodynamic character proves to
difficult even for these models. While dynamic properties
the system are well-understood, thermodynamic variab
such as temperature and entropy are still matters of con
versy with questions even about their existence or usefuln
for systems far from equilibrium@4#.

The purpose of the present paper is to contribute so
numerical data as ‘‘experimental evidence’’ to the und
standing of nonequilibrium-steady-state~NESS! systems.
The paper is focused on various concepts of temperature
cussed in connection with nonequilibrium-molecula
dynamics~NEMD! simulations. The opportunity is provide
by two recent developments. Thedynamicconcept of the
temperature of Rugh@5# is based on the classical statistic
mechanics of equilibrium systems and is readily obtain
from computer simulations. The other is theoperational
thermometer of the present author@6#. So far only the kinetic
~or equipartition! temperature was considered asthe tem-
perature, although it became obvious a decade ago tha
concept of temperature in NEMD models appears to be m
complicated than that@7#.

The concept of thedynamictemperature is based on th
classical statistical mechanics of equilibrium systems, so
straightforward to calculate that in atomistic computer sim
lations. The dynamic temperature is a phase variable and
PRE 621063-651X/2000/62~5!/5989~9!/$15.00
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a functional of microscopic states. Its derivation utilizes t
thermodynamic relationship.T5(]U/]S)V,N , by expressing
the entropy as the logarithm of the volume of the phase sp
@5#,

1

kT
5 K“•“H

u¹Hu2 L 1oS 1

ND , ~1!

whereH is the classical Hamiltonian of the system and t
gradient operator is taken over the full phase space.
angular brackets denote a microcanonical average. Expr
ing Eq.~1! in a computationally more explicit form@neglect-
ing theo(1/N) term#, we obtain@8#

1

kT
5

K dN

m
1“ r

2FL
K (

i 51

N pi
2

m2 1u“ rFu2L 5

dN

m
2K 2(

i 51

N

(
j . i

N

Xi j L
K (

i 51

N pi
2

m2L 1K (
i 51

N

Fi
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~2!

wherek is Boltzmann’s constant,m is the uniform mass of
each of theN particles,d is the dimensionality of the system
F(r1 ,r2 ,...,rV) is the potential energy,pi and Fi are the
momentum of and the Newtonian force on particlei, and
Xi j [“ r i j

•Fi j . Averages both in the numerator and the d
nominator contain kinetic and configurational contribution
The ratio of only the first terms gives the well-known kinet
and the ratio of only the second terms gives theconfigura-
tional temperature. In closed equilibrium systems these t
temperatures are equal.

It is important to note that both the kinetic and the co
figurational temperatures have the correct dimensiona
but the dimensionality of the first and the second terms in
5989 ©2000 The American Physical Society
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5990 PRE 62ANDRÁS BARANYAI
complete expression is not the same@9#. If one eliminates
this inconsistency by using dimensionless quantities,
choice of a set of reduction parameters will influence
relative weights of kinetic and configurational contribution
This is not a problem at equilibrium: we can define the t
terms separately as the kinetic and the configurational t
peratures of the system.

However, using this temperature concept in our spe
numerical experiments, we have to address the questio
the correct reduction scheme, i.e., the unique partition
kinetic and configuration temperatures. In a recent pa
Ayton et al. @9# studied the validity of Fourier’s law in sys
tems with spatially varying strain rates. They constrained
two components, the kinetic and the configurational tempe
ture, separately. Their results seemed to resolve a partic
contradiction@10# if instead of the kinetic temperature th
whole dynamic~they termed it as ‘‘normal’’! temperature
was used@9#.

Gradients of both temperature terms can generate a
current. If the configurational and the kinetic temperatu
differ, it might be important to know their contribution to th
flow of energy. While there is no configurational contrib
tion in infinite dilution, at finite density the configurationa
part becomes substantial. Adopting the usual reduction u
of liquid state computer simulations, this part represents 9
99% of the total dynamic temperature for simple~Lennard-
Jones-type! dense liquids@11#. We are not aware of any
purely theoretical argument for a correct reduction schem
is not easy to provide a convincing numerical demonstra
either, because of the fast equilibration of the two com
nents of the dynamic temperature~see Sec. IV for more de
tails!. In the following, we provide our reduction scheme a
present the kinetic and the configurational temperatures s
rately.

Evans and co-workers have shown that arbitrary pha
space vector fields can be used to generate phase func
whose ensemble average gives the dynamic temperature@8#.
They also discussed numerical properties of the config
tional temperature in molecular-dynamics simulations@8,12#.
Recently, we showed that the dynamic temperature can
estimated in open regions too, because it follows from
condition of the time-independent temperature@13#.

Since derivations of the dynamic temperature@5,8# rely
on the formalism of equilibrium statistical mechanics, it
reasonable to have reservations about the applicability of
quantity to systems far from equilibrium. Clearly, to use th
quantity for nonequilibrium problems is an extension bas
on analogy. One of the aims of this study is to support~or
oppose! the use of the dynamical temperature away fro
equilibrium. The analogy must not be rejected out of ha
because the relationship introduced in Ref.@13# connects the
two parts of the dynamic temperature without making a
reference to the equilibrium state of the system. If only Ne
ton’s laws govern the motion of particles and there is
correlation between velocities and configuration-depend
quantities for finite regions of the system, the kinetic a
configurational temperatures are equal@13#. The results of
Ayton et al. @9# are also encouraging in this respect.

The operational thermometer is a numerical measurin
device, a piece of a solid crystal which has the shape and
of an ordinary particle in the dissipative fluid@6#. If the co-
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hesive forces of the solid are strong enough, small partic
of the thermometer crystal stay together as an almost e
librium entity. The forces of the surroundings translate a
rotate the thermometer as a whole and exchange heat wit
random degrees of freedom. While the energy of the NEM
system is controlled by a numerical feedback mechanism
maintain a steady state, the temperature of the thermom
is free to choose its own value. After some initial period, t
heat transferred from the dissipative fluid to the thermome
and back is equal and the resulting random kinetic energ
thermometer particles defines theoperationaltemperature of
the dissipative system@6#.

There are several questions to be answered. What is
relationship between the operational and the dynamic t
perature in thermostated NEMD models? What is the re
tionship between these two temperatures in more real
nonequilibrium model calculations where the dissipative h
is conducted toward the boundaries by the system itself?
dynamic temperature is an equilibrium concept, but can it
generalized to nonequilibrium systems? In the following
try to find answers to these questions. Obviously, by num
cal experiments we can provide no rigorous proofs but o
numerical data. Nevertheless, the presented evidence s
a more coherent picture of the temperature for steady-s
hydrodynamic systems far from equilibrium than we had
far. In Sec. II, we compare the dynamic and the operatio
temperature for NEMD models following the approach
our previous study@6#. In Sec. III, we present results fo
realistic models of nonequilibrium-steady-state systems
Sec. IV, we discuss the causes of the pronounced split of
dynamic temperature in feedback-thermostated NEMD m
els. Finally, in Sec. V, we conclude this study.

II. DYNAMIC TEMPERATURE AND OPERATIONAL
TEMPERATURE IN NEMD MODELS

We use the same system as in our previous paper@6#;
details not presented in the following can be found there.
choose the SLLOD~so called because of its connection
Doll’s tensor algorithm of Hoover@1#! and the color conduc-
tivity algorithms as NEMD models@2#. The former method
~apart from the synthetic thermostat! is an exact realization
of planar Couette flow. It is valid well beyond the linea
regime, as long as the linear velocity profile is stable.
equations of motion are as follows:

q̇i5
pi

mi
1exgyi ,

~3!

ṗi5Fi2exgpyi2api ,

whereex is a unit vector. The constant shear rate is defin
asg[]ux /]y anda is the thermostating multiplier given b
the Nose´-Hoover integral feedback formula@1#. Equation~3!
describes the motion of the fluid particles. In the case of
particles of the thermometer, there is no thermostat, i.e.,
last term of the momentum equation of Eq.~3! is missing. A
further difference is that the streaming terms@the second
terms on the right-hand side of Eq.~3!# act on the particles
via the motion of the crystal’s center of mass@6#.
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TABLE I. Results for shear flow. TKa is the kinetic temperature of directiona; TCa is the configura-
tional temperature of directiona; TO(ms50.2) is the operational temperature with thermometer particle m
of 0.2 Asterisks refer to the thermometer size of 321 particles.

Shear rate 0.1 0.2 0.3 0.4 0.5

TKx 1.013~3! 1.032~5! 1.046~5! 1.024~4! 0.927~10!

TKy 0.997~2! 1.008~3! 1.032~3! 1.098~3! 1.219~10!

TKz 0.982~3! 0.954~4! 0.918~4! 0.873~3! 0.848~8!

TCx 1.011~5! 1.052~3! 1.103~4! 1.145~4! 1.189~5!

TCy 1.005~4! 1.055~3! 1.142~4! 1.296~5! 1.566~8!

TCz 0.983~4! 0.970~5! 0.964~4! 0.971~5! 1.017~6!

TO(ms50.2) 1.02~2! 1.10~4! 1.16~4! 1.33~5! 1.45~5!

TO(ms51.0) 1.01~2! 1.06~4! 1.18~4! 1.23~5! 1.40~7!

TO(ms50.2)* 1.01~2! 1.11~4! 1.23~5! 1.27~6! 1.50~7!

TO(ms51.0)* 1.01~2! 1.06~4! 1.19~4! 1.25~6! 1.42~7!
1
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The color flow algorithm is similar to the model of a 1-
molten salt under the impact of a constant electric field. T
equations of motion are@2#

q̇i5
pi

m
,

~4!
ṗi5Fi1exciF2a~pi2exciJ!,

whereci[(21)i is the color charge of particlei. The color
field and the color current areF and J[1/N( i 51

N ci ẋi , re-
spectively.

Both models represent anisotropic systems. Even thei
netic temperatures show strong directional depende
TKx[1/@(N2C/3)k#( i 51

N (pix
2 /mi) is different from the

analogously definedTKy or TKz . ~The number of constraint
in the system isC.! Typically the smallest of them isTKz ,
which is the direction perpendicular to the shear plane. In
case of color conductivity, the anisotropy is less pronounc
The largest value,TKx , belongs to the direction of the flow
~Note that in the latter case, thex momentum, reduced by it
systematic part, is used for temperature determination.!

The configurational temperature can also be defined
different directions. This quantity along thex direction can
be written in a computationally explicit form,

1

kTCx
5

K 2(
i 51

N

(
j . i

N

Xi j L
K (

i 51

N

Fix
2 L , ~5!

where Xi j [dFi jx /@d(xj2xi)#. The particular task of the
following calculation is to estimate theTC components for a
fixed kinetic temperature,TK5(TKx1TKy1TKz)/3.0, and to
measure the isotropic operational temperature,TO , simulta-
neously.

We studied the same systems as in our previous pape@6#,
in order to provide an opportunity for the reader to look
other properties of the models. Every numerical details of
calculations was the same~interactions, units, run lengths
etc.!. Here, only the temperature values determined by
three different methods are shown.

The shear-flow results are presented in Table I. Due to
e

i-
e:

e
d.

r

t
e

e

ts

definition, the operational temperature is isotropic. In t
middle of the crystal, the kinetic temperature is higher
0.1–0.4 % than its value for the entire crystal. The sa
behavior can be observed in the case of the configuratio
temperature of the crystal, which, in most cases, is highe
0.5–1.0 % than its kinetic counterpart. Both the kinetic a
the configurational temperatures of the dissipative fluid
anisotropic and can be calculated by an order of magnit
more accurately than the operational temperature. Thi
reasonable because the temperature of the thermometer
only via collisions, while, at every instant, the complete d
namics of the whole fluid determines its kinetic or config
rational temperatures. The relaxation time of the operatio
thermometer in the studied systems is several hundred
units, depending on the mass of the thermometer partic
the strength of the external field, etc. The operational te
peratures are even less certain in the case of the high s
rate simulations~0.4 and 0.5!. These systems are more o
less in the ‘‘string’’ phase, which can maintain particul
dynamics for long periods of the simulation depending
the history of their preparation.

The anisotropy of the kinetic temperature becomes m
pronounced with increasing shear rate.~The sum of the com-
ponents is constrained for 3.0!. The z component of the ki-
netic temperature shows a monotonic decrease with the s
rate. For small shear rates, they component is smaller than
the x component. However, for very high shear rates, wh
the dynamics becomes ‘‘stringlike,’’ they component is the
largest one. The configurational temperature follows t
general trend but the calculated values are always larger
the corresponding kinetic ones. The differences are subs
tial, well beyond the uncertainties of the calculations. Int
estingly, the configurationaly component, with the exception
of the smallest shear rate, is larger than the correspondix
component.

We tested two masses for thermometer particles~0.2 and
1.0! and two sizes for thermometers~135 and 321 particles!.
Internal properties of the thermometer crystal exerted on
negligible influence on the properties of the fluid. Thus, flu
temperatures with different thermometers are not sho
separately. Despite the uncertainties, as we pointed out in
previous paper@6#, the operational temperatures are sign
cantly larger than the corresponding kinetic temperature
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the fluid. They component of the configurational temper
ture of the dissipative fluid seems to be the closest one to
corresponding operational temperature.

We present temperature values of color conductivity c
culations in Table II. In contrast to shear flow, the config
rational temperature is smaller than the corresponding kin
one. Both the kinetic and the configurational temperatu
are higher in the direction of the flow~parallel to thex axis!
than in perpendicular directions. The operational tempera
is very close to the configurational temperature, it is only
x component of the kinetic energy that is substantially d
ferent from the other temperatures.

It would be interesting to establish a unique connect
between the dynamic and the operational temperature. O
ously, it is the whole dynamics of the dissipative fluid whi
determines the value of the latter. However, there are sev
uncertainties that are difficult, or even impossible, to clar
in such a calculation. The operational temperature is no
perfectly universal quantity because the energy of the cry
~kinetic and configuration-dependent! is a function of the
thermal conductivity of the thermometer-fluid boundary.
maintain homogeneity, the thermometer must behave
one of the fluid particles, so properties of the boundary
gion of the thermometer~including thermal conductivity!
might be slightly different for different particle interaction
Nevertheless, we doubt that discrepancies originating fr
this, at least for simple models used in these calculations,
be large enough to be detectable. From the point of view
numerical accuracy, ensuring the ergodic sampling of co
sions is more important. To obtain reliable estimates for
erational temperature values, much longer calculati
would be necessary. Still, this could not establish a uni
connection between the two concepts of the temperat
Contributions to the dissipative energy flux from the kine
and the configurational temperatures must be partitioned
ambiguously. As we alluded to this problem in the Introdu
tion, this is not a trivial task.

III. DYNAMIC TEMPERATURE IN NESS MODEL
SYSTEMS WITHOUT A SYNTHETIC THERMOSTAT

It is obvious that measuring the operational temperat
of inhomogeneousnonequilibrium systems is problemati
even in a steady state. It takes some time for the crystal
the liquid to come to thermal balance.~The relaxation time
of the thermometer is about 105– 106 time steps.! During this
time, however, the thermometer crystal might diffuse aw

TABLE II. Results for color flow. For the definition of sym
bols, see Table I.

Color field 0.0 0.5 1.0

TKx 1.000~2! 1.023~2! 1.180~5!

TKy 1.000~2! 0.989~2! 0.923~6!

TCx 1.000~2! 0.994~3! 0.940~8!

TCy 1.000~2! 0.988~4! 0.912~6!

TO(ms50.2) 1.00~2! 0.99~2! 0.94~3!

TO(ms51.0) 1.00~2! 0.99~3! 0.92~3!

TO(ms50.2)* 1.00~2! 0.99~2! 0.93~3!

TO(ms51.0)* 1.00~2! 0.99~2! 0.94~3!
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into a region where properties, including the ones determ
ing the operational temperature, are different. Fixing
relative position of the thermometer and a given region
the inhomogeneous liquid by some numerical constraint w
distort the results. Thus, for inhomogeneous NESS mod
we compared only the kinetic and configurational tempe
tures.

Two types of model systems were used. Both can be c
sidered as realistic models, in the sense that no synth
thermostat is applied. As a result, these fluids are inhomo
neous. The first model applies the heat conductivity al
rithm of the present author@14#. This method is a modern
version of early ‘‘naive’’ attempts@15# before the synthetic
algorithm of Evans was derived@16#. Since we simplified the
original algorithm of Ref.@14#, it is useful to give a short
description of the method.

In Fig. 1, we show a two-dimensional schematic proje
tion of our simulation box. The system has translational
riodicity in every direction. The hot and cold regions whic
are represented by white squares are under the impac
synthetic thermostats. In the dark areas, only Newton’s eq
tions govern the motion of particles. The fluid system is co
tinuous: particles can wander in and out of each part of
elongated simulation box. We do not interfere with this m
tion because the positions of particles determine whe
they belong to a reservoir or to the Newtonian~thermostat-
free! region. To avoid discontinuity at reservoir boundarie
we apply a continuous spatial switch-on function to mark
thermostat particles. In the present simulation, the form
this function is f (y8)5y8422y8211, where y852(y/ l y
20.5) or y852@(y2Ly/2)/l y20.5# and Ly and l y are, re-
spectively, the box length and the length of the reserv
region in they direction. The equations of motion are

FIG. 1. A two-dimensional projection of the scheme represe
ing the simulation cell of heat-flow calculation.~See text for de-
tails.!
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q̇i5pi /m,
~6!

ṗi5Fi2 f b~yi !abpi ,

where the subscriptb51,2 distinguishes between hot an
cold parts of the system. The two functions have identi
shapes but the first is different from zero only in the h
reservoir, while the second is different from zero only in t
cold reservoir. Thex component of the kinetic temperatu
of the reservoir is defined as follows:

Txb5

(
i 51

N

f b~yi !pix
2

km(
i 51

N

f b~yi !

. ~7!

The time derivative ofTb5(Txb1Tyb1Tzb)/3.0 is con-
strained to zero during the simulation. This differential fee
back and the total momentum of reservoir regions are c
rected by a continuous feedback during the course
simulations@17#. In steady state, the energy input and outp
are identical and can be given as

Q̇b52ab(
i 51

N pi
2

m
f b~yi !. ~8!

The heat conductivity can be calculated using the cons
tive relation of Jy52ldT/dy, where dT/dy5(Thot

2Tcold)/Ly and Jy5Q̇in/2LxLz . Due to the requirement o
translational periodicity, the reservoirs are connected by
Newtonian regimes.~See Fig. 1.! This is the reason for the
factor of 2 in the denominator of the heat flux. In the limit
the infinitely thin reservoir (l y→0), the dynamics of our
system is determined entirely by Newton’s equation of m
tion. In this limit, zero-field heat conductivity calculated b
the formulas above gives values identical with those of
synthetic method of Evans@11#.

Adopting the same approach we devised a model
shear flow. The reservoir regions were given an additio
role, an external field acted and accelerated the particles.
form of the spatial switch-on function was identical with th
of the heat-flow algorithm above. A similar method was us
in one of our earlier works@18#. The momentum equation o
motion is

ṗi5Fi2 f b~yi !~exFb1abpi !, ~9!

where F152F2 . A difference between the heat-flow an
the shear-flow algorithms is that, for the sake of simplici
the temperature control is carried out by an integral feedb
in the latter case.

To model particle interactions, we used a simple soft-c
potential defined as follows:

f~r !5H 4@r 2121r 26#11, r ,21/6,

0, r .21/6.

In the calculations, we applied the usual reduced units
computer simulations@19#. The length of the simulations wa
several thousand reduced time units, depending on the
l
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of the system with a time step of 0.002. The equations
motion were integrated by a fifth-order Gear integrator fo
fluid density 0.8. The average temperature was 1.0.

The numerical results of Evans and co-workers showe
non-negligible system-size dependence of the configuratio
temperature for closed systems@8,12#. This might be even
more important for small open regions of the system@13#.
The configurational temperature might be systematically
ferent from the corresponding local average of the kine
temperature. In the case of heat flow, to study this behav
we performed simulations for different system sizes. Alig
ing eight identical cubes along they axis, we had 864(8
3108), 2048(83256), and 4000(83500) particles. The
simulated fluid was divided up into 32 sections along they
direction.~See Fig. 1.! Each section~or slice of fluid! repre-
sented a local environment within which the averages w
collected. We also performed equilibrium simulations f
each system size, which served as references to show
difference between local kinetic and local configuration
temperatures at equilibrium.

In Fig. 2, we show this difference in an equilibrium sy
tem consisting of 864 particles. The temperature of the s
tem was fixed to 1.0 by using the feedback thermostat of
~6!. In sections 1–4 and 17–20, where the thermostat a
by adding or removing random kinetic energy, the differen
between the kinetic and the configurational temperature
slightly smaller than in the rest of the fluid. The avera
difference in the thermostat-free regions is 0.031. This va
in the systems of 2048 or 4000 particles is considera
smaller, 0.014 and 0.009, respectively. Thus, as one m
expect, the two types of temperatures become identical in
thermodynamic limit.

To see the impact of a nonequilibrium flow, we fixed th
two thermostats~in sections 1–4 and 17–20! to different but
constant temperatures. For the system of 864 particles,
temperatures were 0.85 and 1.15; for the system of 2
particles, they were 0.80 and 1.20; while for the system
4000 particles, these values were 0.75 and 1.25. This way
introduced identical temperature gradients to each of
three systems with identical temperature~1.0! in the middle
of the Newtonian region. However, the sizes of the secti
distinguished by temperature averaging were different.

FIG. 2. Difference between the kinetic,T(k), and the configu-
rational,T(c), temperatures as determined for different sections
the equilibrium fluid. The vertical bars mark the thermostated
gions. The system is periodic.~Number of particles is 864, numbe
density is 0.8, kinetic temperature is 1.0, both in reduced units.!
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Fig. 3 we present the temperature distribution of the larg
system~4000 particles!. The temperature gradient outside
the reservoir regions~between 5 and 16 or 21 and 32! is
practically uniform.~To study other properties of this hea
flow model system, the reader is referred to Ref.@14#.! In
Fig. 4, we present the differences between the kinetic and
configurational temperature values for the three system s
Exploiting the symmetry of the systems, we averaged
physically equivalent sections~5–32, 6–31, etc.! and show
only the left-hand side of the previous diagram. We foun
behavior similar to what we had in the equilibrium case:
difference between the kinetic and the configurational te
peratures seemed to diminish with increasing section s
This is the case around section 11, too, where not only
temperature gradient but also the kinetic temperature and
number density were identical in the three systems.~Both the
temperature and the number density of this model cha
practically linearly with distance along the direction of th
heat flow @14#.! Since the functions of Fig. 4 are not con
stants, properties of nonequilibrium systems influence

FIG. 3. Temperature distribution of the heat-flow model. Da
circle, configurational temperature; open circle, kinetic temperat
The vertical bars mark the thermostated regions. The system
periodic. ~Number of particles is 4000, average number density
0.8 in reduced units.!

FIG. 4. Difference between the kinetic,T(k), and the configu-
rational,T(c), temperatures. Small circle, system of 864 particl
medium-sized circle, system of 2048 particles; large circle, sys
of 4000 particles. Utilizing the periodicity of the system, equivale
sections were averaged. Sections where the thermostat is on a
shown. ~Average number density is 0.8, temperature gradien
0.014 62, medium temperature is 1.0. All are given in redu
units.!
st

he
s.
e

a
e
-
e.
e
he

e

e

difference between the two temperature definitions. Ho
ever, it is obvious from the diagram that the impact of th
influence goes to zero if larger and larger slices of the fl
are used for calculating averages. In the thermodyna
limit, nonequilibrium properties do not seem to influence t
split of the dynamic temperature.

It should be noted that Eqs.~6!–~9! fixed only the kinetic
temperature, which might show these results to be less c
vincing. Unfortunately, constraining the configurational te
perature numerically is very complicated. However, diffe
ences of the kinetic and configurational temperature in
thermostated regions are very similar to values found e
where in the system. At the end of the following section,
will become clear that this is not accidental: it is the result
the fast relaxation of the dynamic temperature split. T
renders the configurational temperature constraint unne
sary.

Although temperature gradients and accompanying d
sity and internal energy variations were enormous, proper
of the heat-flow model vary practically linearly with distanc
along the direction of the heat flow. Someone might arg
that the extrapolated equivalence of the kinetic and the c
figurational temperature is the result of this linearity, as
our model liquids were in the linear regime. In the case
the shearing liquid model, however, this is obviously not t
case. System properties manifest the far-from-equilibri
character of the model. To demonstrate this, we present
eral properties of this model. To the best of our knowled
this is the first application of this algorithm. Our system h
864 or 2048 particles with the same average density, 0.8.
thermostats constrained the reservoir temperatures to
and, at the same time, a fictitious force accelerated the fl
particles in this region.~Contrary to the heat-flow case, it i
impossible to create identical models with different siz
The viscous heat generated by the same shear rate h
travel a longer distance before reaching the reservoirs in
larger system. Therefore, the temperature profile of the la
system with identical shear rate shows higher temperat
than that of its small-system counterpart.! We divided up
every shearing system into 64 sections to have good res
tions. Sections 1–6 and 33–38 represented the reservoi

We studied the impact of system sizes at two sh
rates: 0.139 and 0.066. In Fig. 5, the streaming velocity
different fluid sections is shown, together with the kine
temperature in thex direction for the system of 2048 par
ticles. To obtain local temperatures, particle velocities sho
be reduced with the average local streaming velocities. T
has been done for all three directions, although it was o
the x direction that had large and systematic streaming
locities, as shown in Fig. 5.~The kinetic temperature value
presented in Fig. 5 were calculated without reduction
streaming.! We present the shear rate and the shear stres
Fig. 6 for the same system. The shear rates were calcul
using simply the differences of streaming velocities betwe
neighboring sections. The uniformity of the shear stress d
onstrates the accuracy of the method.

In Fig. 7, we compare the temperatures of systems
2048 particles with two different shear rates: 0.139 a
0.066. We show the configurational and kinetic values se
rately. In the case of the high shear rate, the viscous hea
creates much larger temperatures in the middle of the N
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tonian region where no synthetic thermostat is acting. T
viscous heat travels towards the thermostats where the f
back keeps the temperature at 1.0. It is interesting to n
that contrary to the heat-flow case, the configurational te
perature is larger than the kinetic one.

While for the heat-flow model components of both t
kinetic and configurational temperatures were practica
identical, this is not the case for the shear-flow model. T
kinetic temperatures are very close to one another again
configurational temperature in they direction is larger than
the roughly equivalent configurational temperatures in thx
and z directions.~This was also the case in high-shear-ra
NEMD models of the preceding section.!

We studied this behavior. The question is the same ag
can nonequilibrium conditions maintain finite-temperatu
differences between components of configurational and
netic temperatures? We performed simulations for both s
tem sizes~864 or 2048 particles! with shear rates of 0.139
and 0.066, respectively. The configurational temperature
found to be larger than the corresponding kinetic one. In
case of the system of 864 particles,TC2TK50.025 for thex
and z components and 0.043 for they component. In the
Newtonian region, these values do not vary with sect

FIG. 6. The shear rate~dark squares! and the shear stress,2Pxy

~open squares!, for the system of the preceding figure. Vertical ba
mark the thermostated regions.

FIG. 5. Average velocity~open squares! and thex component of
the kinetic temperature,T(x), calculated~dark squares! in the
shearing system of 2048 particles. The streaming contribution
not been removed fromT(x). Vertical bars mark the thermostate
regions.~Average number density is 0.8,Fb560.1. Both are given
in reduced units.!
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number. The splits are constant within the accuracy of
calculations. In this respect, it is more surprising that
differences are independent of the strength of the exte
field. These temperature differences were determined
both shear rates.

In the case of the larger system, the temperature dif
ences are 0.006 for thex andz components and 0.013 for th
y component. Although data for the larger system are l
accurate, the behavior found in the smaller system is
same. The impact of the nonequilibrium field is margin
The split is overwhelmingly a section-size effect. Larger s
tions produced smaller temperature differences. We p
formed additional calculations to check this behavior but
trend was found to be the same.

In light of these results, it is reasonable to expect t
differences between the configurational and the kinetic te
peratures, as well as differences between component
these, would disappear in the thermodynamic limit. This
not the case in NEMD models. Although configuration
temperatures have a slight number dependence in these
culations, too, this does not diminish the temperature ani
ropy and differences between the configurational and the
netic temperatures.

In the preceding section, we could not relate the six d
ferent dynamic temperature components to the operatio
temperature. It was obvious that their relationship is no
trivial matter. In the case of realistic models, however, t
practical equivalence of the kinetic and the configuratio
temperature components is very tempting. We could
measure the operational temperature, but it would be ab
to expect a value for this quantity different from the equiv
lent six dynamic temperature terms. In these systems,
local pattern of collisions is close to that of an equilibriu
liquid.

IV. RELAXATION OF THE DYNAMIC TEMPERATURE

In the NEMD models of Sec. II, we experienced a sign
cant difference between kinetic and configurational tempe
tures. For very large systems, these differences are expe

FIG. 7. Profile of the reduced kinetic and configurational te
peratures for the system of 2048 particles. Dark squares, config
tional temperature forFb560.2; open circles, reduced kineti
temperatures forFb560.2; dark triangles, configurational tem
perature forFb560.1; open diamonds, reduced kinetic tempe
tures forFb560.1. Vertical bars mark the thermostated region
The system is periodic.
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5996 PRE 62ANDRÁS BARANYAI
to disappear in the more realistic simulations shown in
preceding section. A pronounced decrease of anisotrop
the temperature is expected. Despite the anisotropy of n
models, the temperature seemed to behave like the temp
ture of an equilibrium system. The overwhelming drive t
wards randomness seems to ensure the zeroth law of the
dynamics, even in these anisotropic nonequilibrium flui
Why is it not so in NEMD models with synthetic thermo
stats? The reason for this is quite simple, as we will see
the following numerical demonstration.

The regression hypothesis of Onsager claims that in
linear regime, when the system relaxes to its stable equ
rium state, one is unable to tell whether it was out of eq
librium due to spontaneous internal fluctuations or it w
moved out of it by external perturbations. Utilizing this pri
ciple, we compared the relaxation of the dynamic tempe
ture with the relaxation of the heat-flow vector.

We performed an equilibrium MD simulation and calc
lated the autocorrelation function of the heat-flow vector. W
had 500 particles at the reduced density of 0.8 and temp
ture of 0.9. We used the same interaction model as in S
III. At the same state point, following the equilibrium traje
tory of the same system, we created starting states after e
50 time steps~0.1 reduced time units! by artificially splitting
up the dynamic temperature. We rescaled particle veloc
instantaneously and in a nonequilibrium run calculated
relaxation of the system to equilibrium. Several thousa
nonequilibrium trajectories were sufficient to see the aver
relaxation of the temperature split. In Fig. 8, we compare
results of the calculations. They axis of the figure shows the
reduced and scaled kinetic energy, which is defined asEK
2EK0)/1.5. The curves from the top to the bottom show t
relaxation after the starting kinetic temperature was set
stantaneously to 0.0, 0.45, 0.72, 1.125, 1.35, and 1.8.
though these differences are extreme, the relaxation is
fast.

The normalized autocorrelation function of the heat fl
vector is shown in Fig. 9. Relaxation of the dynamic te
perature is an order of magnitude faster than relaxation of
heat-flow vector in the same system.Temperature relaxation
is a local, one-particle phenomenon: if a particle has a large
kinetic energy, it climbs up on the map of the potential e

FIG. 8. Relaxation of the kinetic temperature to equilibriu
The curves from the top to the bottom show the relaxation after
starting kinetic temperature was set instantaneously to 0.0, 0
0.72, 1.125, 1.35, and 1.8.~Number of particles is 500, reduce
density is 0.8, reduced temperature is 0.9.!
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ergy and within a few time steps the statistical equilibriu
between the kinetic and the configurational part of the te
perature is established. In contrast, relaxation of the h
flow vector is slower because it is a collective phenomen

Although the numerical evidence presented above is
from being exhausting, we believe, the relative speed
these relaxation processes must be similar in other mode
real systems, too. Thus, in realistic far-from-equilibrium h
drodynamic models with natural conduction of the dissip
tive heat, a large split of the kinetic and the configuration
temperature seems very unlikely. In realistic models and
a matter of fact, in real systems, the speed of heat conduc
is finite and slow compared to the local equilibration of t
kinetic and the configurational temperature. It is the inst
taneous, infinitely fast heat removal of NEMD models that
able to split up and stabilize the kinetic and the configu
tional parts of the dynamic temperature. In this respect
response time~the fictive mass! of the Nose´-Hoover scheme
plays no role. There is a certain amount of average diss
tive energy determined by the parameters of the model to
removed in each time step. The memory of the feedb
cannot influence the value of this long-time average. Our
calculations confirmed this: the fictive mass of the thermo
had no impact on the splitting.

The dissipative energy is removed through the rand
momenta of the particles. There is no time for the config
rations to follow this instantaneous process. Thus,the con-
figurational temperature~with the possible exception of ar
tificial regimes! will be larger in NEMD models than the
corresponding kinetic one.

V. CONCLUSIONS

We performed various numerical experiments to study
concept of temperature in steady-state systems far from e
librium. We simulated hydrodynamic models using both t
homogeneous NEMD technology~SLLOD and color flow!
with a synthetic thermostat and the so-called ‘‘naive’’ a
proach for heat flow and shear flow@14#. Besides the usua
and trivial kinetic ~or equipartition! temperature, the
configuration-dependent part of the dynamic temperature
Rugh @5# and the operational temperature of the present
thor @6# were determined. The results showed a signific
difference between the kinetic and configurational tempe

e
5,

FIG. 9. Normalized autocorrelation of the heat flux vecto
~Number of particles is 500, reduced density is 0.8, reduced t
perature is 0.9.!
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tures of NEMD models. The latter was significantly larger
the case of shear flow and smaller in the case of the ‘‘str
phase’’ of color flow. Both temperature contributions f
both models were highly anisotropic. The corresponding
erational temperatures were much closer to the config
tional temperature values. The operational temperature is
tablished through the incessant collisions of fluid partic
with the thermometer. Features of these collisions are fu
tions of the complete dynamics of the dissipative fluid.
dense fluids, it is the configurational part of the temperat
which is important, although the exact relationship betwe
the operational and the dynamic temperature cannot be
termined.

The behavior of our realistic models~also far from equi-
librium! was substantially different from that of NEMD sys
tems. Our model fluids, mimicking heat flow and shear flo
contained only a limited region where feedback thermos
or external forces were acting. Due to their inhomogene
we had to study their properties locally. We experienced
rectional split and also differences between configuratio
and kinetic temperatures. However, these differences see
to diminish with increasing systems. We found the impact
the nonequilibrium dynamics marginal compared with t
size dependence of fluid element averages.

NEMD systems use a feedback procedure which remo
the dissipative heat instantaneously. This energy contro
carried out through the momentum subspace of the dyn
ics. Although equilibration of the configurational and kine
part of the temperature is very fast, its speed is finite. Th
in NEMD models the kinetic temperature is, in general, d
ferent from the configurational one.

The situation is the opposite in realistic models beca
the heat conduction of the system is much slower than
equilibration of the dynamic temperature. Still, hydrod
namic NESS systems are anisotropic. Using only numer
calculations, we cannot exclude the presence of this an
s
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ropy in the temperature. However, in the thermodynam
limit, especially at realistic gradients and inhomogeinities
seems unlikely that we can detect deviations from the iso
pic temperature value.

Our results support the use of the concept of dynam
temperature for systems far from equilibrium. At least, t
calculations did not point to any systematic problem w
respect to this approach. We think the temperature in gen
is still a useful concept for steady-state hydrodynamic s
tems far from equilibrium.

The need for NEMD calculations in the 1970s was mo
vated by limited computer resources. To have a well-defin
system, good signal/noise ratio, large external fields, and
mogeneous models with synthetic thermostats were ne
sary. It must be pointed out that up-to-date computer po
does not help to overcome the inherent problems of NEM
techniques. No matter how small the external field is, th
models are correct only in the zero-field limit. Of cours
there is no question about the usefulness of NEMD mod
Results such as the conjugate pairing rule@20# or the fluc-
tuation theorem@21# are proof of the importance of this ap
proach. However, it must be kept in mind that outside
linear regime, these models have dynamics very differ
from that of real systems. They are not the ideal limiti
cases of reality, like the ideal gas, but artificial models. Th
must be used with extreme care when details of real syst
or experimental phenomena are to be understood. Thi
especially true when thermodynamics of nonequilibriu
steady-state systems is concerned.
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